

PUPCYCLE^{*} FACT SHEET * **P**hytoplankton response to the **UP**welling conveyor belt **CYCLE**

Principal Investigator: Adrian Marchetti, Ph.D.; UNC – Chapel Hill, NC

Additional Scientists: 10 additional researchers from the United States and Canada: 5 from UNC-CH (North Carolina), 3 from Humboldt State (California), and 2 from the University of British Columbia

R/V Oceanus Crew: 12 Crew (male and female); including cooks, engineers, mates, and officers **Teacher at Sea**: Miriam Sutton, M.A.; *Science by the Sea*[®]

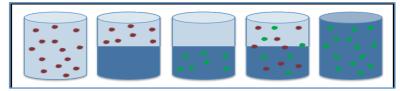
Figure 1 An Introductory Video to Research Vessels (2:30minutes) HTTPS://YOUTU.BE/cP3-G2Q9Dy0

 \star Embark on the R/V Oceanus May 24, 2019 from the Hatfield Marine Science Center in Newport, Oregon.

★ Collect phytoplankton along wide continental shelf region along northern California coast.

 \star Collect phytoplankton along narrow continental shelf region along northern California coast.

 \bigstar Return to Newport, Oregon on June 7, 2019 for disembarkation of the R/V Oceanus.


Figure 2 Study Sites will be in a region referred to as the California Upwelling Zone CUZ), known for increases in phytoplankton blooms and ocean productivity.

Primary Goal: Determine the molecular mechanisms in how specific groups of phytoplankton physiologically respond to environmental conditions UCBC – (Upwelling Conveyor Belt Cycle) and how phytoplankton will be affected by changing ocean conditions.

Hypothesis: Diatoms are uniquely adapted to thrive under UCBC conditions compared to other phytoplankton functional groups (e.g., Dinoflagellates, Haptophytes, Chlorophytes).

Experimental Design: Five (5) Incubation Experiments are designed to investigate these concepts:

- Compare phytoplankton responses to different UCBC stages;
- Compare Surface vs. Subsurface phytoplankton seed populations for their contribution to phytoplankton blooms during an Upwelling Event;
- * Changes in phytoplankton compositions through UCBC stages; and
- ★ Effects of Iron Limitation & Ocean Acidification on phytoplankton responses to UCBC conditions.

(Left-Right): Surface phytoplankton (red dots) and surface water (light blue); Half surface water with surface phytoplankton and half subsurface water (filtered); Half surface water (filtered) and Half subsurface water (dark blue) containing subsurface phytoplankton (green dots); Half surface water and half deep water with Surface and Subsurface phytoplankton; and Subsurface water with deep phytoplankton. Experiments will be completed in triplicate for a total of 15 incubations. [NSF Award #1751805 – Adrian Marchetti, University of North Carolina – Chapel Hill]

Miriam Sutton, M.A., NBCT

Science by the Sea[®] is a 501c3 organization providing educational support to Academic and General Audiences while assisting Research Institutions with broader impacts through Education, Communication, and Outreach. Science by the Sea[®] is a registered trademark. All rights reserved. EIN: 82-4893552; Serial No: 86882933